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Using conformal coordinates associated with conformal relativity—associated with de
Sitter spacetime homeomorphic projection into Minkowski spacetime—we obtain a
conformal Klein-Gordon partial differential equation, which is intimately related to the
production of quasi-normal modes (QNMs) oscillations, in the context of electromag-
netic and/or gravitational perturbations around, e.g., black holes. While QNMs arise
as the solution of a wave-like equation with a Pöschl-Teller potential, here we deduce
and analytically solve a conformal ‘radial’ d’Alembert-like equation, from which we
derive QNMs formal solutions, in a proposed alternative to more completely describe
QNMs. As a by-product we show that this ‘radial’ equation can be identified with a
Schrödinger-like equation in which the potential is exactly the second Pöschl-Teller
potential, and it can shed some new light on the investigations concerning QNMs.

KEY WORDS: de Sitter spacetime; quasinormal modes; gravitational waves;
conformal structures; d’Alembert equation; projective relativity.

1. INTRODUCTION

Quasi-normal modes (QNM) arise in the context of general relativity as
electromagnetic or gravitational perturbations occurring in the neighborhood of,
e.g., Schwarzschild, Kerr, Reissner-Nordstrøm (Jing, 2005), and Kerr-Newman
spacetimes, and their investigation in the Schwarzschild background was started
in Cunningham et al. (1979); Zerilli (1970, 1974). It is well known that no normal
mode oscillations is produced in the process of emission of gravitational waves,
but only quasi-normal oscillation modes, representing an oscillatory damped
wave (Cunningham et al., 1979; Gleiser et al., 1996; Kokkotas, 1999; Leaver,
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1980; Nollert, 1993; Press, 1971; Regge and Wheeler, 1957) while, as yet nothing
is known for nonlinear stellar oscillations in general relativity (Detweiler and
Ipser, 1973) and in the collapse of a star to form a black hole (Cunningham
et al., 1979). Also, a simple derivation of the imaginary parts of the QNM
frequencies for the Schwarzschild-de Sitter spacetime is obtained in calculating
the scattering amplitude in the first Born approximation and determining its poles
(Padmanabhan, 2004; Roy Choudhury and Padmanabhan, 2004). As defined
in, e.g. Khriplovich (2005); Kokkotas (1999), QNMs are the eigenmodes of
the homogeneous wave equations, describing these perturbations – with the
boundary conditions corresponding to outgoing waves at the spatial infinity and
incoming waves at the horizon. The paramount interests to QNMs have been
mainly introduced by Press (1971); Vishveshwara (1970). QNMs can bring
imprints of black holes and can be detected in the gravitational wave framework
(Kokkotas, 1999).

In the one hand, QNMs equations can be derived if we introduce a
projective approach, namely the theory of hyperspherical universes, developed
by Arcidiacono (2000) several years ago and, more specifically, in the so-called
conformal case. When we write Maxwell equations in six dimensions, with six
projective coordinates (we have, in these coordinates, a Pythagorean metric) a
natural problem arises, namely, to provide a physical version of the formalism,
i.e. to ascribe a physical meaning to the coordinates. For this theory, there are
two possible different physical interpretations: a bitemporal interpretation and
a biprojective interpretation. In the first case (bitemporal) we introduce a new
universal constant c′ and the coordinate x5 = ic′t ′ where t ′ is interpreted as a
second time; we thus obtain in cosmic scale the so-called multitemporal relativity,
proposed by Kalitzen (1975). The set of Maxwell equations obtained in this
theory generalizes the equations of the unitary theory of electromagnetism and
gravitation, as proposed by Corben (1946).

On the other hand (our second, biprojective case) we can interpret the extra
coordinate, x5, as a second projective coordinate. We then obtain the so-called
conformal projective relativity, proposed by Arcidiacono (1985), which extends
in cosmic scale the theory proposed by Ingraham (1954), but with a different
physical interpretation. In this theory we have another universal constant, r0, which
can be taken as r/r0 = N , where r is the radius of the hypersphere and N is the
cosmological number appearing in the Eddington-Dirac theory (Eddington, 1920).

Here we consider only the second alternative, i.e., the biprojective interpreta-
tion. With this aim we introduce a projective space P5 tangent to the hypersphere
S4. We then introduce six projective coordinates xa , with a = 0, 1, . . . , 5 and
normalized as

x2 + x2
0 − x2

5 = r2,
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where x2 = xix
i , i = 1, . . . , 4 and r is the radius of the hypersphere. These

coordinates allow us to construct the conformal projective relativity, using a six-
dimensional tensor formalism.

This paper is organized as follows: in Section 2 we present a review of the so-
called theory of hyperspherical universes, proposed by Arcidiacono, considering
only the six-dimensional case, in which conformal projective relativity appears as
a particular case. The choice of convenient coordinates and the link between the
derivatives in these two formulations (a geometric version, six-dimensional, and a
physical version, the five-dimensional conformal version) are also presented. After
this review, we discuss in Section 3 a Klein-Gordon partial differential equation
written in conformal coordinates. In Section 4, we show that a conformal ‘radial’
d’Alembert-like equation, can be led into a Schrödinger differential equation in
which the associated potential is exactly a second Pöschl-Teller potential.

2. HYPERSPHERICAL UNIVERSES

In 1952 Fantappié proposed the so-called theory of the hyperspherical uni-
verses4 . This theory is based on group theory and on the hypothesis that the
universe is endowed with unique physical laws, valid for all observers. As particu-
lar cases, Arcidiacono (2000) studied a limitation of that theory, i.e., he considered
hyperspherical universes with 3, 4, . . . , n dimensions where motions are given by
n(n + 1)/2-parameter rotation group in spaces with 4, 5, . . . , (n + 1) dimensions,
respectively. Those models of hyperspherical S3, S4, . . . , Sn universes, can be
interpreted as successive physical improvements, because any one of them (after
S4) contains its precedents and is contained in its successors.

After 1955 Arcidiacono studied the case n = 4, special projective relativ-
ity, based on the de Sitter hyperspherical universe with a group (the so-called
Fantappié-de Sitter group) of ten parameters. This theory is an improvement (in
a unique way) of Einstein’s special relativity theory and provides a new group-
theoretical version of the big-bang cosmology. As a by-product of special projec-
tive relativity one can recover several results, for example, Kinematic Relativity,
proposed by Milne (1935, 1948); Stationary Cosmology, proposed by Bondi and
Gold (1948) and Plasma Cosmology, proposed by Alfvèn (1983, 1986).

Moreover, if we consider a universe S4 as globally hyperspherical but en-
dowed with a locally variable curvature, we obtain the so-called general projective
relativity which was proposed and studied by Arcidiacono after 1964. This theory
allows us to recover several results as particular cases, for example, the unitary
theories proposed by Jordan (1947), Kaluza (1921); Klein (1926, 1928), Straneo
(1931), Thiry (1951), Veblen (1933) and Weyl (1918a,b, 1919, 1952) and some

4 See the Appendix A.
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generalizations of the gravitational field, as those proposed by Brans and Dicke
(1961), Sciama (1958) and Rosen (1973, 1980).

In this paper we are interested only in the case n = 5, i.e., conformal projective
relativity based on the hyperspherical universe S4 and its associated rotation group,
with fifteen parameters, which contains the accelerated motions. We remember
that, whereas for n = 4 we have a unitary theory (a magnetohydrodynamic field),
for n = 5 we have another unitary theory, i.e., the magnetohydrodynamics and
Newton’s gravitation. We also present the relations between Cartesian, projective
and conformal coordinates and the link involving derivatives in the six- and five-
dimensional formulations.

2.1. Conformal Coordinates

We use the notation xi , (i = 1, 2, 3, 4) and x5 for conformal coordinates and
xa , (a = 0, 1, 2, 3, 4, 5) for projective coordinates. The relations between these
coordinates are

xi = r0
xi

x0 + x5
and x5 = r0

r

x0 + x5
,

which satisfy the condition

x2
5 − x2 = r2

0
x0 − x5

x0 + x5
,

where x2 = xix
i , and r0 and r are constants. After these considerations, the trans-

formations of the so-called conformal projective group are obtained using the
quadratic form in projective coordinates

x2 + x2
0 − x2

5 = r2,

decomposing the elements of the six-dimensional rotation group (with fifteen
parameters) in fifteen simple rotations (xa, xb).

2.2. Connection Between Derivatives

Our main objective is to write down a differential equation, more precisely
a Klein-Gordon-like equation, associated with conformal coordinates. We first
obtain the relation between the six projective derivatives ∂a ≡ ∂/∂xa and the
five-dimensional derivatives ∂i = ∂/∂xi and ∂5 = ∂/∂x5. We can then write the
differential equations in the projective formalism, with six dimensions, in physical,
i.e., conformal coordinates, with five dimensions.5

5 As we already know, in five dimensions we must impose a condition on space in order to account for
the fact that we are aware of only four dimensions. We have the same situation here, i.e., we must
impose an additional condition.
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Taking φ = φ(xi, x5), a scalar field, and using the chain rule we can write

∂iφ = [
(∂ixk)∂k + (∂ix5)∂5 + (∂ix0)∂0

]
φ

∂5φ = [
(∂5xk)∂k + (∂5x5)∂5 + (∂5x0)∂0

]
φ

with φ = φ(xi, x5, x0) and i, k = 1, 2, 3, 4.

From now on we take r = 1 = r0. We consider φ(xa) a homogeneous func-
tion with degree N in all six projective coordinates xa . Using Euler’s theorem
associated with homogeneous function, we get

(
xi∂i + x5∂5 + x0∂0

)
φ = Nφ

where ∂a = ∂/∂xa and N is the degree of homogeneity of the function.
Then, the link between the derivatives can be written as follows (Arcidiacono

and Capelas de Oliveira, 1996)

∂0 φ = N
A+

x5
φ + B−∂5φ − x5xi∂iφ

∂5 φ = −N
A−

x5
φ − B+∂5φ − x5xi∂iφ

∂i φ = N
xi

x5
φ + xi∂5φ + x5∂iφ

where we have introduced a convenient notation

2A± = 1 ∓ x2 ± x2
5 and 2B± = 1 ± x2 ± x2

5 .

We observe that for x5 = 0 and considering ∂5φ = 0 we obtain

∂iφ = A∂iφ + N

A
xiφ

∂0φ = −Axi∂iφ + N

A
φ

where A2 = 1 + x2. These expressions are the same expressions obtained in spe-
cial projective relativity (Gomes and Capelas de Oliveira, 2004) and provide the
link between the five projective derivatives and the four derivatives in Cartesian
coordinates, i.e., the relation between five-dimensional (de Sitter) universe and
four-dimensional (Minkowski) universe.
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3. CONFORMAL KLEIN-GORDON EQUATION

In this section we use the previous results to calculate the so-called general-
ized Klein-Gordon differential equation

∂2

∂x2
a

� + m2� = 0

where m2 is a constant and a = 0, 1, . . . , 5. Introducing projective coordinates (in
this case we have a Pythagorean metric) we obtain6

∂2U

∂x2
i

+ ∂2U

∂x2
0

− ∂2U

∂x2
5

+ m2U = 0

where i = 1, 2, 3, 4 and U = U (xi, x0, x5).
Using the relations between projective and conformal coordinates and the

link (involving the derivatives) in the two formulations we can write
[
x2

5

(
� − ∂2

∂x2
5

)
+ 3x5

∂

∂x5
+ N (N + 5) + m2

]
u(xi, x5) = 0

where N and m2 are constants, � is the Dalembertian operator given by

� = � − 1

c2

∂2

∂t2

and � is the Laplacian operator. This partial differential equation is the so-called
Klein-Gordon differential equation written in conformal coordinates or a confor-
mal Klein-Gordon equation.

The case m2 = 0 transforms this equation in the so-called generalized
d’Alembert differential equation. Another way to obtain this differential equa-
tion is to consider the conformal metric in Cartesian coordinates, which furnishes
the so-called Beltrami metric (Arcidiacono, 2000) where the d’Alembert equation
appears naturally. This equation can also be obtained by means of the second order
Casimir invariant operator7 associated with the conformal group.

To solve the conformal Klein-Gordon equation, we first introduce the spher-
ical coordinates (r, θ, φ) and get

∂2u

∂r2
+ 2

r

∂u

∂r
+ 1

r2
Lu − 1

c2

∂2u

∂t2
− ∂2u

∂x2
5

+ 3

x5

∂u

∂x5
+ �

x2
5

u = 0, (1)

6 Hereafter we consider m = m0c/h̄ where m0, c andh̄ have the usual meanings.
7 Invariant operators associated with dynamic groups furnish mass formulas, energy spectra and, in

general, characterize specific properties of physical systems.
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where we introduced x4 = ict and defined the operator8

L ≡ ∂2

∂θ2
+ cot θ

∂

∂θ
+ 1

sin2 θ

∂2

∂φ2
(2)

involving only the angular part. In this partial differential equation we have u =
u(r, θ, φ, t, x5) with � = N (N + 5) + m2.

Using the method of separation of variables we can eliminate the temporal
and angular parts, writing

u = u(r, θ, φ, t, x5) = A einctY�m(θ, φ) f (r, x5), (3)

where A is an arbitrary constant, n > 0, � = 0, 1, . . . and m = 0,±1, . . . with
−� ≤ m ≤ � and Y�m(θ, φ) are the spherical harmonics, we get the following
partial differential equation

∂2f

∂r2
+ 2

r

∂f

∂r
− ∂2f

∂x2
5

+ 3

x5

∂f

∂x5
+ �

x2
5

f +
[
n2 − �(� + 1)

r2

]
f = 0

with f = f (r, x5). If we impose a regular solution at the origin (r → 0), the
solution of this partial differential equation can be obtained in terms of a product
of two Bessel functions.

4. A D’ALEMBERT-LIKE EQUATION

In this section we present and discuss a partial differential equation which
can be identified to a d’Alembert-like equation, which we call a conformal ‘radial’
d’Alembert equation. We firstly introduce a convenient new set of coordinates,
then we use separation of variables and obtain two ordinary differential equations.
One of them can be identified as an ordinary differential equation whose solution
is a generalization of Newton’s law of gravitation; the other one is identified
with an ordinary differential equation similar to a one-dimensional Schrödinger
differential equation with a potential equal to the second Pöschl-Teller potential
(da Rocha and Capelas de Oliveira (2005)).

We introduce the following change of independent variables

r = ρ cosh ξ,

x5 = ρ sinh ξ, (4)

with ρ > 0 and ξ ≥ 0, in the separated Klein-Gordon equation, obtained in the
previous section, and after another separation of variables we can write a pair of

8 Here r is a coordinate and should not be confused with the radius of the hypersphere. Besides, it is
always possible to define a Wick-rotation (Sakurai, 1985) of the time coordinate, i.e., ct �→ ict .
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ordinary differential equations, namely,

ρ2 d2U

dρ2
− p(p + 1)U = 0, (5)

where U = U (ρ) and

d2V

dξ 2
+ (2 tanh ξ − 3 coth ξ )

dV

dξ
+

[
�(� + 1)

cosh2 ξ
− �

sinh2 ξ
− p(p + 1)

]
V = 0

(6)
where V = V (ξ ) and p is a separation constant.

We first discuss Eq. (5). Its general solution is given by

U (ρ) = C1ρ
−p + C2ρ

p+1

where C1 and C2 are arbitrary constants.
If we consider the case p = 1, introducing the notation C1 = gM with g and

M having the usual meanings, we get

U (ρ) = gM

ρ
+ C2 ρ2

i.e., a gravitational potential which can be interpreted as a sum of a Kepler-like
potential and a harmonic oscillator potential, giving rise to the gravitational force

f (ρ) = ∇U = − gM

x2 − x2
5

+ 2C2(x2 − x2
5 )1/2,

with a singularity at x = x5. We note that for C2 = 0 we obtain an expression
analogous to Newton’s law of gravitation.

Secondly, Eq. (6) can be solved by introducing the change of dependent
variable

V (ξ ) = sinh
1
2 ξ tan h ξ F (ξ )

and we obtain

− d2

dξ 2
F (ξ ) +

[
µ(µ − 1)

sinh2 ξ
− �(� + 1)

cosh2 ξ
+

(
p + 1

2

)2
]

F (ξ ) = 0, (7)

where the parameter µ is given by a root of the algebraic equation µ(µ − 1) =
N2 + 5N + 15/4 + m2.

The differential equation above can be identified with a Schrödinger-like
differential equation in which the associated potential is given by

Vµ�(ξ ) = µ(µ − 1)

sinh2 ξ
− �(� + 1)

cosh2 ξ
, (8)
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Fig. 1. Vµ�(ξ ) × ξ evaluated for µ = {1, . . . , 10} and � = 0, 1.

which is exactly the second Pöschl-Teller potential with energy E given by Ep =
−(p + 1/2)2 < 0. The graphics showing Vµ�(ξ ) for various values of µ and � are
depicted below (Figs. 1–10).

Explicit solutions of Eq. (7) are written as

F (ξ ) = (tanh−1/2 ξ )(tanh2 ξ − 1)σ ×
×(

2F1(σ1, σ2, σ3, tanh2 ξ ) (tanh−σ3 ξ )D

+2F1(1 + σ3 + σ1, 1 + σ2 + σ3, 2 + σ3, tanh2 ξ ) (tanh2+σ3 ξ )E
)

where D,E are integration constants, 2F1 denotes the hypergeometric function,
and

σ1 = 1

4
(3 − 2µ − 2� − 2p), σ2 = 1

4
(1 − 2µ + 2� − 2p),

σ3 = 1

2
(2µ − 3), 2σ = σ1 + σ2 + σ3 (9)

Fig. 2. Vµ�(ξ ) × ξ evaluated for µ = {1, . . . , 10} and � = 2.
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Fig. 3. Vµ�(ξ ) × ξ evaluated for µ = {1, . . . , 10} and � = 3.

Fig. 4. Vµ�(ξ ) × ξ evaluated for µ = {1, . . . , 10} and � = 4.

Fig. 5. Vµ�(ξ ) × ξ evaluated for µ = {1, . . . , 10} and � = 5.
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Fig. 6. Vµ�(ξ ) × ξ evaluated for � = {1, . . . , 10} and µ = 0, 1.

Fig. 7. Vµ�(ξ ) × ξ evaluated for � = {1, . . . , 10} and µ = 2.

Fig. 8. Vµ�(ξ ) × ξ evaluated for � = {1, . . . , 10} and µ = 3.



312 Rocha and Oliveira

Fig. 9. Vµ�(ξ ) × ξ evaluated for � = {1, . . . , 10} and µ = 4.

We note that the first Pöschl-Teller potential is connected to the study of a
Dirac particle on central backgrounds associated with an anti-de Sitter oscillator,
i.e., the transformed radial wave functions satisfy the second-order Schrödinger
differential equation whose potential is exactly the first Pöschl-Teller potential
(Cotǎescu, 1998).

5. QNMS EQUATIONS

It is also possible to derive QNMs formal partial differential equations if,
instead the ansatz given by Eq. (3), we assume

u = u(r, θ, φ, t, x5) = e±imφ F (r, θ, t, x5), (10)

Fig. 10. Vµ�(ξ ) × ξ evaluated for � = {1, . . . , 10} and µ = 5.
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and Eq. (1) reads
(

∂2

∂r2
+ 2

r

∂

∂r
+ 1

r2

∂2

∂θ2
+ cot θ

∂

∂θ
+ 1

sin2 θ

m2

r2 sin2 θ
−

1

c2

∂2

∂t2
− ∂2

∂x2
5

+ 3

x5

∂

∂x5
+ �

x2
5

)
F (r, θ, t, x5) = 0, (11)

which, after the separation of variables given by F (r, θ, t, x5) = �(θ )R(r, t, x5),
can be lead to

�′′(θ ) + cot θ�′(θ ) + [�(� + 1) − m2 csc2 θ ]�(θ ) = 0, (12)

which presents the associated Legendre polynomials �(θ ) = P m
� (θ ) as solutions9 ,

and
(

∂2

∂r2
+ 2

r

∂

∂r
− 1

c2

∂2

∂t2
− ∂2

∂x2
5

+ 3

x5

∂

∂x5
+

(
�

x2
5

− �(� + 1)

r2

))
R(r, t, x5) = 0,

(13)
Now if we use again Eqs. (4), then Eq. (13) takes the form

− ∂2R

∂t2
+ ∂2R

∂ρ2
− 1

ρ2

[
∂2

∂ξ 2
+ (2 tanh ξ − 3 coth ξ )

∂

∂ξ

+
(

�(� + 1)

cosh2 ξ
− �

sinh2 ξ

)]
R(ξ, t, ρ) = 0 (14)

where now R = R(ξ, t, x5). By means of the ansatz

R(ξ, t, x5) = sinh3/2(ξ )

cosh(ξ )
H (ξ, t, x5), (15)

and making ρ = 1, which implies by Eqs. (4) that r2 − x2
5 = 1, Eq. (14) gives

∂2

∂t2
+

[
∂2

∂ξ 2
− Vµ,�(ξ ) − 1

4

]
u1(ξ, t) = 0, (16)

where u1(ξ, t) = R(ξ, t, ρ = 1). The potential Vµ,�(ξ ) is defined by Eq. (7), where
µ(µ − 1) = � + 15/4. These equations are formally QNMs equations and are
prominently used in the description of gravitational and electromagnetic pertur-
bations in supermassive stellar and black holes processes.

6. CONCLUDING REMARKS

In this paper we discussed the calculation of a conformal d’Alembert-like
equation. We used the methodology of projective relativity to obtain a confor-
mal Klein-Gordon differential equation and, after the separation of variables, we

9 Here we have imposed regularity condition, i.e., for θ = ±π , the solution is analytic.
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got another partial differential equation in only two independent variables, the
so-called conformal d’Alembert differential equation. Another separation of vari-
ables led to an ordinary differential equation which generalizes Newton’s law of
gravitation. Finally, we have shown that the remaining differential equation, a
‘radial’ differential equation, is transformed into a one-dimensional Schrödinger
differential equation with an associated potential that can be identified exactly with
the second Pöschl-Teller potential. These equations can shed some new light on
the analytical investigations concerning QNMs. There are some open questions
concerning QNM modes, and new developments are promising, and not only
restricted to d = 4 spacetimes. Motl and Neitzke (2003) has recently given an
original derivation of the quasinormal frequencies of Schwarzschild black holes
in the case where d ≥ 4, and also of Reissner-Nordstrøm black holes in d = 4,
in the limit of infinite damping, where they find an aperiodic behavior for the
QNM for spin 0,1, and 2 fields (Motl and Neitzke, 2003). Also, in Shao et al.
(2005); Wang et al. (2000) QNMs are investigated in a time-dependent black hole
background and in Reissner-Nordstrøm-AdS black holes.

From supersymmetric quantum mechanics with periodic potentials, it can be
seen that the most general periodic potentials which can be analytically solved
involve Jacobi’s elliptic functions, which in various limits become Pöschl-Teller
potentials arising in the context of Kaluza-Klein spectrum (Kaluza, 1921). Kaluza-
Klein modes of the graviton have been widely investigated (Brandhuber and
Sfetsos, 1999; Hatanaka et al., 1999; Nam, 2000; Randall and Sundrum, 1999a,b),
since the original formulation of Randall and Sundrum necessarily has a continuum
of Kaluza-Klein modes without any mass gap, arising from a periodic system of
3-branes. The methods and equations developed here can shed some new light
in the calculation of mass gaps from a distribution of D-branes (Nam, 2000)
in the context of five-dimensional supergravity – which will be discussed in a
forthcoming paper.

A natural continuation of this calculation is to prove that all ‘radial’ problems
associated with an equation resulting from a problem involving a light cone can be
led into a Schrödinger-like differential equation in which the potential is exactly
the Pöschl-Teller potential (Capelas de Oliveira, 2005).

APPENDIX: HYPERSPHERICAL UNIVERSE MODELS

In this appendix we briefly summarize the idea of hyperspherical universes
as originally proposed by Fantappié (1973) and developed by Arcidiacono (2000).

The main motivation behind those models is to consider seriously the premise
that a Universe must be a harmonic and well ordered system of laws, and that
this statement is to be expressed mathematically by using group theory in an
appropriate way. Taking into account that Galilean Relativity, which uses the
Galileo group as invariance group of physical laws, has been perfectioned into
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Special Relativity, which uses the Poincaré group as invariance group of physical
laws, Fantappié asked himself in which way it would be possible to perfect Special
Relativity into a kind of final relativity. His answer to this question was very simple
indeed. He realized that the Poincaré group is the contraction of the 10-parameter
Lie group known today as de Sitter group (but which should be called, as in the
text, the Fantappié-de Sitter group) which can be made to act projectively on a
flat 4-dimensional (Minkowski) spacetime. Next Fantappié asked whether there
were other spacetime manifolds where the group could act naturally and serve as
invariance group of physical laws. The answer is positive, and Fantappié found that
the natural manifold is a hyperspherical universe, which he called S4, of constant
curvature radius. Of course, the previously known models for the universe (not
based on General Relativity) are all particular cases of this one, corresponding
to some group contractions involving the velocity of light and/or the universe
radius, or both. Fantappié did not stop there. He proposed that the hyperspherical
universe model S4 was only an approximation for truth in the sense that it was
embedded in a hyperspherical universe model S5 where the conformal group (a
15-parameter Lie group) acts naturally as invariance group of physical laws. By
its turn, S5 may be generalized into S6 and so on. At each generalization new
fundamental physical constants make their natural appearance as a kind of group
parameter whose contraction produces the group used in the previous universe
model. It is clear that the extra dimensions in each Universe model must be
interpreted, in an appropriate way (something that is also necessary in modern
Kaluza-Klein type theories), and it is at this point that his mathematical skills
give us useful physical hints. In particular, Arcidiacono, one of his students,
showed that the hyperspherical universe models S4 and S5 contain many aspects
of several proposed unified theories. Of course, we do not have space here even
to start discussing the many beautiful results found by Arcidiacono and we invite
the reader to consult Arcidiacono book (Arcidiacono, 2000) for more details.
However, we would like to emphasize here that many ideas proposed by him are
worth to be more developed since, in particular, it seems that in his work there is
the seed of a simple solution for the problem of dark energy and dark matter, an
issue that we shall discuss elsewhere.
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